If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-390=0
a = 2; b = 0; c = -390;
Δ = b2-4ac
Δ = 02-4·2·(-390)
Δ = 3120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3120}=\sqrt{16*195}=\sqrt{16}*\sqrt{195}=4\sqrt{195}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{195}}{2*2}=\frac{0-4\sqrt{195}}{4} =-\frac{4\sqrt{195}}{4} =-\sqrt{195} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{195}}{2*2}=\frac{0+4\sqrt{195}}{4} =\frac{4\sqrt{195}}{4} =\sqrt{195} $
| x=1.44 | | 2x-4-3x-9=5x-25 | | -8x-14=7(-2-4×)+4x | | 3t-(1/8)=4t+(1/24) | | Y-9h-15=93 | | x=-2½ | | -16t^2-23t-99=0 | | –5x^2+125=0 | | (2/3)m+1=(1/6)m-2 | | 7(h+3)=6(h+3 | | F(x)=x+4x^2-7 | | (1/4)f-(2/5)=2f-(1/3) | | 3m^2+4m-1=0 | | 2x+5(x-3)=3x+1=39 | | 10/15x+6=12/5x | | -2.9n=0.87 | | 7(y-2)=5y=20 | | 5(k+1)=5+12k | | 2c-5=4 | | 2x+8=4-2x+x | | -3(2-x)=8(3+4) | | x^2-72x-500=0 | | 2x^2+39x+72=0 | | 43=3y+16 | | 6x-3(2x-1)=-33 | | 25y+15-16y=7y+1½-9 | | 3x-2(2x+7)=10 | | 10x+6-7x=1+8x | | 1.5-0.02x=0.18 | | (2x+1)^-4/5=81 | | 70+5x=150 | | 38700=200x-4500x/1000000 |